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Some Properties of Generalized
Factorable 2-D FIR Filters

Roberto Manduchi

Abstract—Factorable M -dimensional filters are interesting be-
cause they can be implemented efficiently: their computational
complexity is O(Mn) instead of O(n™) (as in the case of generic
non-factorable filters). Unfortunately, the passband support of
a factorable filter can assume only very simple shapes (paral-
lelepipeds with edges pairwise parallel to the axes), which are
not adequate for most applications. In a recent paper, Chen
and Vaidyanathan proposed a new class of non-factorable /-
dimensional filters, whose passband support can be any par-
allelepiped, which can be realized with complexity O(Mn). In
addition, they are designed starting from 1-D prototypes, which
makes for a very simple design procedure. In this paper, we
show that such filters belong to the class of generalized factorable
(GF) filters (whose formal definition we introduce here), and
derive some properties of theirs relative to the 2-D case. Our
review includes issues such as the relation between minimax
frequency response parameters and filter size (which is nontrivial
in the multidimensional case), symmetries, 2-D step response, and
frequency response constraints.

1. INTRODUCTION

ACTORABLE filters represent a very appealing class

of M-D filters— they require O(Mn) OPS’s (operation
per input sample), instead of O(n™) OPS’s as in the case
of generic M-D FIR filters. However, factorability is too
tight a constraint for most applications: a factorable filter’s
passband can only be in the shape of a parallelepiped with
edges pairwise parallel to the axes.

Recently, Chen and Vaidyanathan [1]-[3] proposed a new
class of non-factorable M-D filters which can be implemented
with only O(Mn) OPS’s, and whose passband support’s shape
can be any parallelepiped. The design procedure is quite simple
and its computational burden is very light (since the filters are
designed starting from A 1-D prototypes). Hence, they are
particularly suitable for computer aided design (CAD) systems.
The work of Chen and Vaidyanathan extends the previous
results by Renfors [4] and by Cortelazzo et al. [5].

Chen and Vaidyanathan’s filters actually belong to the class
of generalized factorable (GF) filters, which we formally
define in this paper. A GF filter is such that its polyphase
components with respect to a given basis are the tensor
product of M 1-D filters oriented along suitable directions.
The design procedure by Chen and Vaidyanathan represents
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the only known algorithm to design GF filters. In the first
part of the paper, we review the design procedure by Chen
and Vaidyanathan, and derive some important characteristics
of the “generalized factorable” implementation. In particular,
we show that the number of OPS’s required for the generalized
factorable implementation of a GF filter defined on a lattice
A, and of a GF filter with the same frequency response
characteristics, defined on a sublattice ' of A, may or may
not differ, depending on the passband shape and on the mutual
characteristics of the two lattices. Such a result is of extreme
importance when GF filters are part of an M-D IFIR structure
[6].

Beside possessing an efficient implementation, GF filters
enjoy a number of interesting properties, which make them
appealing for use in video technology. Hence, even if the
efficient “generalized factorable” implementation is not used,
GF filters represent a profitable choice for many applications.
Some properties (preservation of the zero-phase and of the
Nyquist property) have been already described in [3]. In this
paper, we derive some further features of interest of GF filters,
relative to the 2-D case, as listed in the following.

1) Frequency Response Characterization: We show that the
minimax parameters of the frequency response of a GF
filter are related to the filter order via a simple approx-
imate formula, which is reminiscent of the well-known
relation for the 1-D case [7], [8]:

—101og(6,6s) — 13

o fs_fp

(1

where N is the length of an optimal minimax low-
pass 1-D filter, f, and f, are its passband and stopband
frequencies, and 6, and ¢, are its passband and stopband
ripples. Note that in the literature, similar relations have
been described only for a class of circular symmetric
filters [9] and for minimax diamond-shaped filters [10].
In the case of GF filters, we derive worst-case rela-
tions which hold for any choice of the parallelogram
specifying the passband support.

2) Symmetries: 2-D GF filters designed starting from zero-
phase 1-D filters may or may not satisfy a symmetry
property similar to the quadrantal symmetry. We derive
a simple condition to verify when such a property is
satisfied. Symmetry may be used to reduce the number
of multiplications per input sample if the factorable
implementation is not employed.

1053-587X/96$05.00 © 1996 IEEE



MANDUCHI: GENERALIZED FACTORABLE 2-D FIR FILTERS

3) 2-D Step Response: We give a simple characterization of
the 2-D step response of GF filters, exploiting the fact
that they are designed combining two 1-D filters.

4) Frequency Response Constraints: If the filter to be
designed is part of a sampling structure converter, it
is useful to impose some nulling constraints on its
frequency response [11], [12]. We show how such con-
straints can be translated into simple constraints on the
1-D filters used in the design of the GF filter.

The paper is organized as follows. In Section II we report
(together with the adopted nomenclature) a number of results
of lattice theory. In particular, we introduce here the notions of
the least dense factorable lattice containing some given lattice
A, and of the densest factorable sublattice of A, which are
instrumental in deriving a number of results of this paper. Also
in Section II, we give the formal definition of certain useful
2-D filter parameters (passband and stopband curves, passband
and stopband ripples), together with some basic properties.

In Section III, we review the procedure of Chen and
Vaidyanathan to design GF filters. Some useful remarks to the
original algorithm are pointed out, and the formal definition
of GF filters is stated. In Section IV, the properties of 2-D GF
filters listed above are derived. Section V has the conclusions.

II. BASIC RESULTS AND DEFINITIONS

To develop our theory, it is necessary first to introduce some
notions of lattice theory, reported in Section II-A. Section 11-B
contains the formal definition of some 2-D filter parameters,
and derives some basic properties. Although such notions are

used extensively by the multidimentional signal processing

community, they are dispersed in the literature. In order to
make the paper self-contained, we have gathered them here,
since new results will be derived from them.

A. Lattice Theory Basics

In this section we report some notions of lattice theory that
are used extensively throughout the paper, together with the
adopted nomenclature. Section II-Al) contains facts already
known in the literature, which we report here in order to make
the paper self-contained. For their proofs, as well as for more
details, the reader is addressed to [31, [12]-[16]. Section II-A2)
reports some novel results.

1) Background and Nomenclature: R denotes the set of
real numbers, and Z is the set of integers.

We denote vectors by lowercase boldface letters and matri-
ces by capital boldface letters. Their entries are named after

the following example:
Az
. 2
A2,2> 03

We use the following notation for a generic diagonal matrix D:

D = diag(D1,D2,- ). 3)

def T, p def def (An
a'= (ar,a2)’ ; A= (a]ag) = (A2,1

Given two sets A and B, we denote their difference (i.e.,
the set of elements of A that do not belong to B) as A\ B.

We deal always with square full-rank matrices in this work.
For the purpose of this section, we assume that the size of
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the considered matrices is fixed to M. Matrix I is the identity
matrix.

Given a matrix V = (vy|va| - |var), we define SPD(V)
the parallelepiped Zi\il a;vi, =1 < «a; < 1. Given a point u,
we define R(u) the parallelepiped with edges parallel to the
axes {a : |a;}] < |u;|}, and R(u) its boundary.

Given a rational number a, den(a) denotes the least strictly
positive integer such that a-den(a) is integer. Given a rational
matrix A, den(A) denotes the least strictly positive integer
such that A - den(A) is an integral matrix. In other words,
den(A) is the least common multiple among {den(A4; ;)}.

Any integral matrix U such that U™! is still integral (or
equivalently, such that |det(U)| = 1) is called unimodular.
Two integral matrices A, Ay such that Aj 1 A4 is unimodular
are called right-equivalent or right-associated. For each class
of right-associates, there is just one Hermite normal form
matrix, i.e., a matrix A such that!

1) A is upper triangular,

2) Ai; >0,

3) Ai; < Ajsforl <o <j< M.

A lattice A that admits a basis A is denoted by LAT(A).
In other words, A = LAT(A) = {An : n € ZM}. A unit
cell of a lattice A is any region C such that

1) C+a;NC+a; =0 for any a;,a; € A,a; # aj,

2) UaleA C+a = RM,

We denote a signal h(-) defined on A by h(a) (where a € A)
or by h(An) (where n € Z™). The two notations are
interchanged liberally. We always use lowercase letters for
signals, and the corresponding uppercase letters for their
Fourier transforms.

Matrices A; and A, are bases of the same lattice if
(and only if) AJ 1A1 is unimodular. When dealing with
sampling lattices, we always assume that they are sublattices
of ZM (i.e., they are integral lattices, so that they admit only
integral bases). Note that any result on integral lattices can be
immediately extended to rational lattices (i.e., whose points
have rational components). A lattice is said to be factorable
(or separable) if it admits a diagonal basis.

Let T' = LAT(B) be a sublattice of A = LAT(A). Then
H = A~!B is integral. Term | det(H)] is called the index of
T in A (sometimes denoted by (A : T') [14]), and it is the ratio
between the density of A and the density of I'.

A lattice A may be represented in terms of a sublattice T’
and of any set P of coset representatives for the cosets of I'
in A [14] (P is also called a T'-period of A [17]):

A= U T+ a;. “)
a;,eP

A T'—period of A is formed by the elements of A contained
in some unit cell of I'.

Given a signal defined on A, its ['—polyphase components
(where T' is a sublattice of A) are

hr(s)défh(err%sEI‘,rEP (3)

'In general, the definition of Hermite normal form matrix may be ex-
tended to non-full-rank matrices by imposing the further condition: A, ; =
0if A;; =0 [13].
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where P is some I'-period of A. The coset representative r
in formula (5) is termed polyphase index of the polyphase
component. Note that the I'-polyphase components are defined
on I', and that the definition (5) actually depends on the
choice of P. Given P, there are (A : I") distinct I'—polyphase
components. (In the 1-D case, given a signal h{z), we will say
that h"(z) = h(Nz +7),0 < r < N, is the r-th N-polyphase
component of h(zx)).

Let n be an integer. Then the distinct sublattices having
index n in LAT(A) are {LAT(AH;)}, where {H,} are the
matrices in Hermite normal form with determinant equal to
n [15].

We adopt the following definition for the Fourier transform
of a signal h(a) defined on a lattice A = LAT(A):

Hf) =Y hla)e 722 =

acA

Z h(An)e‘j%fTAn (6)

nezM

H(f) is periodic on the dual lattice A* = LAT({A~T), where
A-T def (A-1T.
The Fourier transform of the signal hs(a)defined on the

sublattice I' of A, obtained subsampling the signal h(a)
defined on A as by

hs(a) = h(a),acT @)
is
1
H(f) = 8y ;H(err) ®)

where P is any A*-period of I'™.

Note that we use the term “filter” meaning both the filter’s
impulse response (denoted by small letter) and the filter’s
frequency response (denoted by capital letter).

2) Novel Results: Consider lattice A = LAT(A) with in-
tegral A. As described in Section II-A-1, A admits a basis
A" in Hermite normal form. A geometric interpretation is the

5 3 .
0 1 ): (Al.l',o)T

is the point of A on the horizontal positive half-axis closest
to the origin, while (A} ,, 5’2)T is the point of A in the first
quadrant to the left of (A} ,, 0)7, which has minimum distance
to the horizontal axis. From this geometric standpoint, it is
straightforward to argue that the same argument should apply
interchanging the role of the horizontal and of the vertical

axes. For example, from Fig. 1 we can find a “dual” basis

10
1
A725.

any integral lattice admits a basis A! in lower Hermite normal
form, i.e., such that

following one (see Fig. 1, where A* —

Generalizing such an idea, we can infer that

1) Al is lower triangular,

2) Ai; 20,

3) AL, < Al forl <j<i<M.
The Hermite normal form matrices as defined in Section II-A1)
thus correspond to the upper Hermite normal form matrices.
Note that, once one has got an algorithm to find the upper
Hermite normal form matrix right-equivalent to a given matrix

A (see for example [13]), it is trivial to modify the algorithm to
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Fig. 1. Lattice A (crosses), the LDFL containing A (dots), the DFS of

A (circles), and the two rectangular unit cells of A (dotted and dashed
rectangles).

obtain the lower Hermite normal form matrix right-equivalent
to A.

We consider only the 2-D case in the following. From our
previous geometric arguments, one readily recognizes that,
once the upper and the lower Hermite normal form bases
A* and A’ of A are known, finding a basis of the densest
factorable sublattice (DFS) I' of A = LAT(A) (see Fig. 1)
is straightforward:

I'= LAT(S), S = diag(S; = A}, S, = 44,). 9
Since I is a sublattice of A, we have that (A%)~!S = H with

integral H. Then, H = L fa with
0 ko

AL, = koAg 5. —koAYo/AY = k1, integer k1, ko, (10)

In particular, in order for I' to be the densest factorable
sublattice, ko should be the smallest integer for which (10)
holds true, 1.e.

an

Hence, A}, = Af oden(AY 5 /AT ;). Then, since det(A™) =
det(A'), we have

Aqf,l = A11,1den(A11L,2/A7f,1)~

ko = den(A7 5/AT ).

12)

This way, we are able to write S in terms of A“ only:
S = (diagAY ,, AY yden(AY,/AY ). In particular, the index
of ' = LAT(S) in A = LAT(A) is

(A:T) = det(H) = det(S)/ det(A*) = den( To/AT 1)

(13)

Another important notion is that of the least dense factorable

lattice (LDFL) W containing A = LAT(A). Let R =

diag(R1, R2) be a basis of V. The entry R; is the greatest

common divisor of the entries of the ith row of matrix A. We

have that RK = A" for some integral matrix K. It follows
that K = <”1 ”2), with

0 ns3
Ail =ni Ry, Aqf,Q =naRy ,

Ag,g = ngRQ (14)



MANDUCHI: GENERALIZED FACTORABLE 2-D FIR FILTERS

for some integer ny,ns,n3. Since ¥ is the least dense fac-
torable lattice among those containing A, it must be (using

(12))

Ry =AY, /den(AY,/Af ) = Al1,1 y By = A3, (15)

In particular, the index of A in ¥ is again

(U : A) = det(K) = det(A")/ det(R) = den(AY /AT ;).
(16)

Combining relations (9), (12), (13), and (15), we maintain that

(U:A)=(A:T)=51/R; = S2/Rs. amn
Making use of the upper and lower Hermite normal form bases
A% and A!, we can also determine the rectangular unit cells of
A centered at the origin with sides pairwise parallel to the axes
(throughout this paper, we refer to them simply by the term
“rectangular”). One may prove, starting from our previous
geometric observations, that a 2-D integral lattice admits
only two rectangular unit cells, namely, R(AY /2, A3,/2)
and ’R(Allyl/Z,Alz’Q/Q) (see Fig. 1). In particular, from (12),
we infer that the two rectangular unit cells coincide only if
den(AY,/AY ) = 1, ie, if A}, =0 (A is factorable).

B. Some Filter Parameter Definitions and Basic Results

This section contains some novel definitions and basic
results that are extensively used throughout the paper. Only
zero-phase filters (i.e., having purely real frequency response)
are considered in the following. Unitary sampling period is
assumed for the 1-D filters.

The typical minimax parameters of a 1-D FIR low-pass filter
h(n) are the passband and stopband frequencies f, and f, >
fp» the passband and stop-band ripples 6, > 0 and é; > 0,
and the filter length N. We consider here only low—pass filters
with frequency response approximating a unitary step. Note
that quantities f, and 6, (as well as f, and &) are related to
one another as

max

-
{0<F<sp)

H(f)] , 6= max |H

18
(e DL A8

bp =
where H(f) is the frequency response of h(n).

As a matter of fact, f,, fs and &,/6, (or other combinations
of the parameters, see [18]) are fixed as design parameters.
On the other side, when analyzing a given low-pass frequency
response (not necessarily optimal), it can be useful to param-
etrize it in a similar fashion. For this purpose, we introduce
here the following definitions of the analysis parameters of a
given filter h(n):

5, = max 11— H(f)| (19)
{fizfi—%j(#lf:fi :OalH(fi)|>0‘5}
. N d (f
fp=min{fi: f; >0, H(f;) =1 = 6y, —;—| =5, # 0}
20)
§s = max H(f)| @2n
(2D o =0 | H(£:)]<0.5}
dH(f
fe=min{f;: fi >0, H(f;) = bs, ( )‘f -5 #0}. (22)
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Note that the couples (f,,6,) and (f,,0,) identified by
(20),(19) and (22), (21) respectively, satisfy relations (18),
unless 0, > 0.5 or 6, > 0.5, in which case the low—pass
filter is unsuitable for any practical purpose. We will assume
hereinafter that 6, < 0.5 and 6, < 0.5.

We now extend the previous notions to 2-D filters. We start
with the case of factorable filters. Given two low—pass FIR
filters h1(n) and hg(n) (with frequency response H,(f) and
Hy(f), respectively), characterized respectively by parameters
(fpi> Fsir Opis 0s;, Ni), i = 1,2, consider the 2-D filter

h(nl, TLQ) = h1 (’rll)hz(ng).

The frequency response of such a filter (periodic on Z?) is
H(f) = Hi(f1)Hz(f2). In the ideal case

Opy = bp, =05, =05, =0 24

we have that H(f) = 1 for £ € R(fp,. fp,) and H(f) = 0 for
f € R(0.5,0.5) \ R(fs, fs,)- In such a case, the transition
region is “naturally” defined as R(fs,, fs,) \ R{fp1s fos)--

In any practical situation, condition (24) is never met,
and the intuitive notion of “transition region” needs to be
defined precisely. For this purpose, we may adopt a procedure
which is reminiscent of the one-dimensional case. We define
transition region of a 2-D filter H(f) the region of the unit
cell R(0.5,0.5) delimited by the passband curve P and the
stopband curve S (when they are univocally determined),
defined as follows:

(23)

P—{f~H —1-8, [VHOI #0} @5

S={f:H(f) =6, ,|VH()|* # 0} (26)
where V indicates the gradient operator and

b, = max 1— H(f; 27

P = ey o | HE D

s = max |H (£:)]. (28)

{£;:||VH(£:)||>=0,|H(£:)]<0.5}

The region P contained within P is called the passband
region of H(f), while the region of R(0.5,0.5) outside & is
called the stopband region of H(f). Note that our definitions
may be easily extended to the case of filters defined on a
nonorthogonal lattice. Instead of region R(0.3,0.5), some
other suitable unit cell of the frequency repetition lattice
centered at the origin (e.g., the Vorenoi cell [14]) may be
chosen.

It may be interesting to check the proposed defini-
tions for the case of a factorable filter h(ni,n2) =
hi(ni)ha(ng), where hi(n) and ho(n) are low-pass optimal
in a minimax sense. Cases of interest for VH(f) =

T
(dHl i (h) g, (f2), H (f)M) = 0 are points such

df2
that delf(lf U - 4H:(z) — (0 Extremal interesting points

dfs
f thus belong either to region R(fp,,fp,) or to region
R(0.5,0.5) \ R(fs, fs,)- It is easily seen that

8y = 6y + o + Opy By 2 Bpy + 6,

29
while

by = max {8s, + 65,0, 05, + 85, 0p, } = max {6,065, }
(30)
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Consider now the pass—band curve P. It is readily seen that P
is contained within region R(f1, f2) \ R{(fp,, fp), Where fi
and f, are such that Hy(fy) = (1 —6,, —6p,)/(1 4 6,,) and
Hs(f2) = (1=6,,—8,,)/(1+6,,). Note that f1 and f> belong
to the transition bands of H;(f) and Hs(f), respectively, (so
long as 1 — §p, — 8p, > 05, and 1 — 6,, — bp, > bs,).

The bandwidth ( f; - f,, ) depends mainly on 1) the passband
ripple 6,, and 2) the behavior of H;(f) in its transition
band. Approximating Hi(f) in its transition band by a linear
function, one can show that, for small values of the ripples,
(fi — fp,) can be approximated by 26,,B;,, where B, =
(fsy — fp.)- Similar considerations apply to the bandwidth
(f2 = fpy)- In what follows, we will always assume that
quantities 20,, By, and 26,, B, are small enough as to allow
us to approximate P with R(fy,, fp,)-

The case of the stopband curve S can be treated in a similar
fashion. It can be seen that (assuming that the product 6,05,
is negligible), if 65, > 0s,, then & = E(fs“fz), where
f2 is such that Ho(f2) = 6,,. Again, approximating Hs(f)
in its transition band by a linear function, we have that the
bandwidth ( f,, — f2) can be approximated by (85, — 8,,) B, .
In addition, in this case, we will assume that such term is
small, allowing us to approximate S by R(fs,. fs,). Similar
considerations hold if §s, < &s,.

It is useful now to define the conventional filter length of
an FIR filter as the number of samples of its impulse response
not constrained to zero. Such a definition turns out to be
profitable when dealing with filters defined on a non—factorable
lattice. The conventional length of a filter is proportional to
the number of OPS’s required in a direct form realization.

Consider now the case of a filter obtained by subsampling
an impulse response h(n) on a given lattice T = LAT(A),
obtaining A(An). Such a filter may be suitable for processing
signals defined on I', or to obtain different shapes of the
passband and stopband regions via a change of basis (see
Section II-A). If N, is the conventional length of h(n),
the conventional length of h(n) is approximately equal to
N./|det(A)].

One could analyze [[VH(f)| in order to obtain parame-
ters P, S, 0, and 8, according to the previous definitions
(25)-(28). Unfortunately, no general result is to be found,
because the position of the zeros of ||[VH(f)|| is a priori
unknown. However, a simple argument based on the number
of replicas generated by subsampling [3] shows that

bp < 6p + (| det(A)] — 1), (3D

and

§s < | det(A)[6s (32)

where &, and &, are the passband and stopband ripples of
H(f) as in (27) and (28).

Combining inequalities (31) and (32), an upper bound for
6,65 can be found. Note that, in the case of a 1-D filter, one
can find a lower bound for 6,6, too. Let M be the decimation
ratio (corresponding to | det(A)|). Then, recalling from (1)
that the lower bound for 6,6, is a function of the product
NB; (where N is the length of h(n) and B, its transition
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band), and observing that

NB, ~ NB, (33)
(where N =~ N /M and B; ~ B;M are referred to h(n)), we
have that

8pbs > (5,05)" (34)
where (5p55)0pt is the product of the passband and the
stopband of the optimal minimax filter with length N and
transition band B,. The determination of similar lower bound
relations for the multidimensional case (where relation (1) does
not apply) is the object of current research.

The displacement of the passband and stopband curves P
and S (of H(f)) with respect to P and S (of H(f)) depends
mainly on values é, and | det(A)], and on the relative position
of the ripples in the passband and in the stopband regions
of H(f). Intuitively, the smaller such values, the “closer”
the two curves P and S to P and S, respectively. In our
simplified analysis, we will approximate P and S with P and
S. respectively.

III. GENERALIZED FACTORABLE FILTERS

In this section, we review the algorithm proposed by
Chen and Vaidyanathan [1]-[3] to design M-D filters with
pass—band in the shape of a parallelepiped. In Section III-A
we briefly restate the design procedure, adding some remarks
to the original algorithm, and in Section III-B we review
the “generalized factorable” implementation. An important
result of Section III-B is that the number of OPS’s required
for the generalized factorable implementation of a filter h(a)
defined on a lattice A, and of a filter with the same frequency
response specs of h(a), but defined on a sublattice T" of A,
may or may not differ, depending on the joint geometrical
characteristics of A and I". The formal definition of GF filters
is then introduced in Section III-C.

A. Chen and Vaidyanathan’s Design Technique

Throughout the remainder of this paper, the signal definition
lattice will be denoted as A = LAT(C). The procedure
proposed by Chen and Vaidyanathan [1]-[3] enables one to
design an M-D FIR filter defined on A, with passband region
approximating a parallelepiped centered at the origin, starting
from M suitable 1-D lowpass filters.

Let

(35)

M
SPD(P) = {Zaipi L —1<a; < 1}

i=1

be a parallelepiped (representing the desired pass—-band re-
gion), characterized by matrix P = (p1|p2|---|pa). We
assume that P has only rational entries. Consider the par-
allelepiped SPD(P; = CTP) (matrix C may actually be any
basis of A). SPD(P,) represents a “transformed” version of
the passband region SPD(P).

Let

A = PTden(Py). (36)
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Note that A is integral. Now consider filter h(n) =
Hgl q(n;), where ¢(n) is an ideal 1-D filter such that

— 1: 1f] S fIJ
Q) = {o, i< [fl<05

and f, = 1/den(P;). Filter A(n) = | det(A)|h(An) is such
that, within a suitable unit cell,

- o [1, feSPD(P,)
H(f) = {0, otherwise.

€0

(38)

The just described algorithm suffers from a “design overhead”
[3], in the sense that |det(A)| (the “decimation ratio”) is
typically higher than necessary, and filter ()(f) may have a
very narrow transition band. It is important that | det(A)| be
small for the control of the filter characteristics, as will be
stressed later in Section IV-A. It is possible (in general) to
lower such a value by allowing for different 1-D filters along
the axes [3]. Let

AZDA» D:diag(D17D27"'aDM) (39)

where D; is the greatest common divisor of the entries of the
ith row of A. Note that A is integral. Consider M 1-D ideal
filters ¢;(n), such that

_ L <
@i = {0, Jo. <171 <05 @
where f,, = D;/den(P,). Their tensor product
B M
h(n) = Hq,(nz) 41)
i=1

has spectral support in SPD(diag(fp,; fps - fpa))s while
h(n) = |det(A)/h(An) has spectral support in SPD(P;).
Finally, the sought for filter 2(Cn) which satisfies

_[1, feSPD(P)
H(f) = {0, otherwise 42)
within a suitable unit cell of the dual lattice A*, is
h(Cn) = h(n) = | det(A)|h(An). (43)

Remarks:

1) In the original algorithm by Chen and Vaidyanathan
[3], the authors used term | det(M)| (where L=1M is
any left coprime factorization of P, Ty instead of term
den(P,) in (36). Their choice yields higher values of
|det(A)| than necessary, as |det(M)| can be larger
than den(P;) (for a proof, see the Appendix of [12]).
However, if we allow the 1-D filters to differ from one
another (like in the second part of the algorithm), any
common factor in the entries of A will be “absorbed”
by matrix D. 5

2) Note that, from (43), any different choice C = CU,
unimodular U, of the basis of A, induces a different
sampling matrix A = AU. Hence, we can always pick
a basis C of A such that A is in upper (lower) Hermite
normal form.
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3) In practical cases, filters ¢;(n) will be characterized by

4)

5)

6)

7

the minimax parameters (fp,, fs;,0p,, 05, Ni) (as de-
fined in Section II-B). Assume that the desired frequency
response of the filter H(f) is specified by the passband
and stopband surfaces SPD(P,) and SPD(P,) in the
shape of parallelepipeds having pairwise parallel faces,
ie.,

Ps:PPT7 T:diag(Tl7T27“'TAM> ’ Ti > 1. (44)

The corresponding decimation matrices A, and A,
obtained via the previous algorithm, may differ from
each other. One way to circumvent such a problem, is
to compute the matrix A and the stop—band frequencies
{fs,} following the previous algorithm for P = P,
and set the passband frequencies {f,, = f,/¢:}. Then,
within the approximation discussed in Section II-B, the
passband and stopband regions of the filter will coincide
with SPD(P,,) and SPD(P,), respectively.

It can be shown that, if P is a Z* -period of LAT(AT),
then

H(f) =Y H(AT(CTf+1))

repP

(45)

and that the support of the impulse response of h(Cn) is

SPD(CA‘Hiag({Ni; ! }\)) NLAT(C)  (46)
/

where N; is the length of the sth 1-D filter in (40). In
the remainder of this paper, we will approximate the
conventional length of 4(Cn) with Hf\il N;/|det(A)].
Matrix D in decomposition (39) has the following
geometrical interpretation: LAT(D) is the least dense
factorable lattice (LDFL, see Section II-A-2)) containing
LAT(A). Then, the LDFL containing LAT(A) is Z™.
This in turn implies that, if A is diagonal, then A = L.
Suppose one is given a GF filter h(a) defined on A =
LAT(C) with spectral support approximating SPD(P).
Let T = LAT(CK) be a sublattice of A, and assume
that the spectral support of h(a) is contained within
some unit cell of I'*. In order to design a filter g(a)
defined on I with the same spectral support of A(a),
one can choose between two procedures. The simpler
one is derived immediately from equation (43), letting
g(CKn) = |det(K)|h(CKn), ie., subsampling i(a)
on I" and adjusting the gain. The conventional length N,
of g(a) is approximately equal to the conventional length
N, of h(a) divided by | det(K)|. If the LDFL containing
LAT(AK) is less dense than LAT (D) (see Remark 5
above), one can use the second part of the algorithm
instead, and construct the new sampling matrix and the
new passband and stopband frequencies for the 1-D
filters. It is easily seen (making use of relation (1))
that, if the 1-D filters of (40) are forced to exhibit the
same passband and stopband ripples as in the design
of h(a), the conventional length of g(a) will be again
approximately equal to Ny, /|det(K)]|.

Starting from 1-D optimal minimax filters, one does not
necessarily obtain the best minimax approximation (in
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the class of GF filters) to the ideal frequency response
of (42). The determination of the constraints on the 1-D
filters to get the optimal minimax solution, remains an
open issue.

B. Generalized Factorable Implementation

Following Chen and Vaidyanathan’s algorithm, one designes
a GF filter by sampling an appropriate factorable impulse
response. Hence, it should not surprise that techniques for
the filter’s efficient implementation may be devised. Let N}
and N be the lengths of the 1-D filters ¢;(n) and ga(n) of
Section III-A (for the sake of notation’s simplicity, in this
section we refer only to the 2-D case). If the filter h(a) is
implemented in direct form, approximately NiNs/|det(A)]
OPS’s are required (which corresponds to the conventional
length of the filter). Chen and Vaidyanathan cleverly proved
in [3] that it is possible to implement the filter with only
approximately N; + Ny OPS’s. Their proof is based on a
machinery of formal identities; our proof is (hopefully) more
intuitive.

In the effort to be clear, we divide the procedure for the
generalized factorable implementation into several steps.

Let C and A be bases of the signal definition lattice and of
the decimated lattice respectively, as in Section III-A. Assume,
without loss of generality, that A is in upper Hermite normal
form (see Remark 2 in Section III-A).

Step 1: Consider a change of basis on the input signal
z(Cn) and on the filter A(Cn):

Z(An) = 2(Cn) , h(An) = h(Cn). (47)

Step 2.: Filter h(An) is not factorable (unless A is uni-
modular), but it is made up of factorable polyphase com-
ponents. To prove this, let AH = diag(S,S2),51,5 > 0
be a basis of the densest factorable sublattice (DFS, see
Section II-A-2)) of LAT(A). Then, there are (denAd; o/A11)
LAT(AH)-polyphase components in A(An):

def

h"(AHn) < h(AHn +r1), r € P. (48)

where P is some LAT(AH)-period of LAT(A). Each com-
ponent hf(a),a € LAT(AH), is factorable. In fact, let
a = (k151,k8F) and r = (ry,7d); then

hr(a) = ¢7" (k1)g5* (k2).

is the r;th S;-polyphase component of filter ¢;(n):

(49)

where ¢

@ (n) % q(nS; +13), 0 < ry < S (50)

Step 3: At this point, it should be clear that it is possible to
filter Z(a) with h(a) in a factorable fashion. It just needs to
write down the LAT (AH)-polyphase decomposition of h(a)

to get
267]2771' I‘Hl‘ )
repP

X(F)H(f)

_j27rf Tr) Hr(f) (51)

z;(
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Each term (X(f)e*jz’“f T') H*(f) represents the (fac-
torable) filtering, by the LAT(AH)-polyphase component
of h(a) of index r, of a version of Z(a) displaced by r.

It 1s interesting to derive the number of OPS’s required for
the generalized factorable implementation. Let the length of
the two 1-D filters ¢ (n) and g2(n) be Ny and N- respectively.
Then the lengths of their S1— and Sy-polyphase components
as in (50) are approximately Ny/S; and Ny/Ss, respectively.
Now, from Section II-A2) we have that

# LAT(AH)-polyphase components = S;1/R; = Sa/Ro
(52)
where diag(R1, Ry), Ry, R2 > 0, is a basis of the LDFL
containing LAT(A), and symbol “#” stands for “number of.”
But, according to Remark 5 of Section III-A, By = R = 1
(and consequentely S1 = S2). Hence, the number of OPS’s
required for the realization is approximately

# OPS’s = # LAT(AH)-polyphase components
1V1/51+1\T2/SQ :N1+N2, (53)

Consider now the case of a filter defined on the sublattice
I' = LAT(CK), designed by subsampling h(a) (as in the first
procedure of Remark 6 above). Let diag( R}, R}), R}, R, > 0
be a basis of the LDFL containing LAT(AK), and let AH’ =
diag(51,55). 51,55 > 0 be a basis of the DFS of LAT(AK)
(note that S7 > 51,55 > S3). Now we have that, in general,

1 # RS, so that S # S5. The number of OPS’s required
for the realization in this case is

# OPS’s = Si/R} - (N1/Si + N2/S5) = Ni/R} + No/ R,
(54)

Let us summarize this last result: the number of OPS’s required
for the generalized factorable implementation of a GF filter
defined on A = LAT(C), and of its version subsampled
on a sublattice I' = LAT(CK), may or may not differ,
according to (53) and (54). In particular, let A be the basis
of the subsampling lattice like in Section III-A. Then, if
the LDFL containing LAT(A) and the LDFL containing
LAT(AK) coincide, the number of required OPS’s will be
the same the two cases. Such a result is in contrast with
the case of non-factorable implementation, where subsampling
the impulse response reduces the number of OPS’s by a
factor approximately equal to the subsampling ratio. Similar
arguments hold adopting the second procedure of Remark 6.
As an example, consider the case of A = Z? and

A = g i . Lattice LAT(A) is represented by dots

in Fig. 2(a) and (b). A basis of the LDFL containing
LAT(A) is diag(Ry, = 1,R, = 1), while a basis of
the DFS of LAT(A) is diag(S; = 2,9 = 2) = AH.
Hence, there are |det(H)| = 2 LAT(AH)-polyphase
components. If the lengths of the 1-D filters g¢i(n),g2(n)
are N; and N, respectively, we have that the length of the
S1- and S»-polyphase components is approximately N;/2
and Ny/2, respectively, so that approximately N; + Ny
OPS’s are required. Consider now the sublattice of LAT(A)

with basis AK = 4

0 ! (represented by small circles in
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Fig. 2(a)). A basis of the LDFL containing LAT(AK) is diag
(R} = Ry = 1,Ry = Ry = 1), whereas a basis of the DFS
of LAT(AK) is diag(S] = 4,55 = 4) = AH’. The number
of LAT(AH')-polyphase components is |det(H')| = 4,
whereas the lengths of the S and S)—polyphase components
of the two 1-D filters are approximately Nj/4 and Ny/4.
Hence, Ny + Ny OPS’s are also required in this case since
the LDFL containing LAT(A) and the LDFL containing
LAT(AK) coincide. One can easily verify that in the case of
the factorable sublattice with basis AK’ = g g (which is
represented by small circles in Fig. 2(b)), only (N; + N3)/2
OPS’s are required for its realization. In this case, the LDFL
containing LAT(AK') (e, LAT(AK') itself), is different
from the LDFL containing LAT(A) (i.e., Z?2).

The number of multiplications in the implementation of
the zero-phase 1-D filters can be reduced by exploiting the
symmetry of the coefficients. Note however that the r—th S-
polyphase component of a zero-phase 1-D filter ¢(n) satisfies
the symmetry property only if 2r/S is integer (as it can be
easily proved). Since it is 0 < r < 9, we have that only the
zeroth S—polyphase component (if S is odd) or only the zeroth
and the S/2th polyphase component (if S is even) satisfy the
symmetry property.

Step 4: We should now get back to the definition lattice
LAT(C) via the inverse of transformation (47). Each coset
LAT(AH) + r is mapped into LAT(CH) + CA~'r (note
that A='r € Z? asr € LAT(A)). In particular, points {k9;}
on the i-th axis are mapped into points {kT;}, where T; is
the ith column of CH. Hence, the factorable filtering of Step 3
corresponding to the polyphase index r, becomes the cascade
of two generalized 1-D filterings (the ¢th of which by the 7;th
S;-polyphase component of ¢;(n) along the direction T;) of
signal z(a), displaced by vector CA~'r.

Before concluding this section, we would like to point out
that in certain applications, computational complexity is not
the main issue. For example, in the case of spatio-temporal
video filters, computational complexity trades off for memory
requirement.

C. Generalized Factorable Filters: A Formal Definition

Let A = LAT(C) be an M-D lattice. Consider the set of
points of A aligned along a given direction:

Ly = {kv, integer k} (55)

where v = Cn with ny,no,- -+, nas coprime (not necessarily
pairwise coprime). £, spans all the points of A along the line
av,a € R. A filter h(a) such that h(a) # 0 only fora € L,
will be called a generalized 1-D filter on v. Let N be the
number of non-null elements of h(a) (assume for simplicity’s
sake that between two non-null samples of h(a) there is always
a non-null sample). N will be called the generalized length of
h(a). In general, N OPS’s are required to implement h(a)
(more precisely, in case no symmetry is present, in the direct
form realization N multiplications and N — 1 sums per input
sample are required).

Suppose now A is factorable (without loss of generality, we
can assume A = ZM). Then h(n) is said to be factorable
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Fig. 2. (a) Lattice LAT(A) (dots) and its sublattice LAT(AK) (circles)
(see text). (b) Lattice LAT(A) (dots) and its sublattice LAT(AK') (see
text).

[9] if it is the tensor product of M 1-D filters: h(n) =
Hij\il ¢i(n;). We can extend such a notion exploiting the idea
of generalized 1-D filters: Given a lattice A and a basis of its
C = ci|cy| - |ear of A, we will say that h(a) is generalized
factorable (GF) on C if h(Cn) = [[i%, ¢i(cin;), Where
each filter ¢;(a) is generalized 1-D on c;. Note that such a
definition applies to filters defined on any lattice, and not only
on factorable ones.

The idea of generalized factorability allows us to classify
filters that, although not factorable, can be transformed, via a
change of basis of the definition lattice, into factorable filters.
Hence, they can be implemented with a number of OPS’s that
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grows linearly with the sum of the lengths of their impulse
response’s edges (instead of growing with the product of such
lengths, like in the “direct” implementation). We extend further
our definition to include the class of filters designed using the
algorithm by Chen and Vaidyanathan.

Let V be an integral matrix. A filter h(a) defined on
A = LAT(C) is said to be generalized factorable (GF) on
CV if its LAT(CV)-polyphase components h'(s) are GF on
CV, where

hr(s) € h(s +1), s € LAT(CV), re P

and P is any LAT(CV)-period of LAT(C). A filter defined
on LAT(C), which is GF on CV, is also GF on CVD for any
integral diagonal matrix D. Moreover, for any FIR filter h(a)
defined on LAT(C), it is always possible to find a matrix V
such that h(a) is GF on CV. To prove this, one just needs to
choose a matrix V such that the support of h(a) is contained
within some unit cell of LAT(CV).

Note that the procedure of Chen and Vaidyanathan repre-
sents the only known algorithm to design filters GF on CV,
where AV is a diagonal basis of the DFS of LAT(A), and A
is the decimation matrix, according to the notation of Section
1I-A.

(56)

IV. SOME PROPERTIES OF 2-D GF FILTERS

A. Minimax Parameters

We derive here some relations among conventional filter
length (see Section II-A2)), passband and stopband ripples,
and some measure of the “size” of the transition region, that
hold for GF filters designed from optimal minimax 1-D filters.

Adopting the notation of Section III-A, from Remark 4 in
the same section it is seen that

def

F, =diag(fy,, fr,) = A"TCTP, (57)
def

F, Sdiag(fs,, fs,) = A~TCTP, (58)

Noting that |det(F; — Fp)| = |det(A~TCT(P, — P,))| =
By, By,, where By, = f;, — fp,, we have that, for given
passband and stopband parallelograms specifying the support
of H(f), the product of the transition bandwidths of filters
q1(n) and ¢a2(n) (and, therefore, term 1/NjNy, for given
passband and stopband ripples 6,, and §,, of the two 1-D
filters, see (1)) is proportional to |det(C)|/|det(A)]. The
conventional length N, of filter A(a), which corresponds to
the number of OPS’s required in the direct form realization,
is approximately equal to N1 Ny /| det(A)|; we thus maintain
that, for given passband and stopband ripples of @1(f) and
Q2(f), N, can be considered approximately inversely pro-
portional to |det(C)| and independent of A. Similarly, for
fixed value of |det(C)|/|det(A)|, the conventional length
N is approximately inversely proportional to det(P, — P,)
(which represents the area .4 of the “corner region” depicted
in Fig. 3):

A - N, ~ constant. 59)

The resemblance of such a result with the relationship between
transition bandwidth, ripples and length of minimax 1-D filters
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Fig. 3. Example of “corner region” for a diamond-shaped spectral mask.
Solid line: passband curve. Dashed line: stopband curve.

(1), 1s apparent. A more careful exam, though, shows that
the situation is actually quite tricky. As a matter of fact,
relation (59) holds for fixed ripples 6,,,6,, of the two 1-D
filters. The relation between {6,,, 65, } and {6, 65} (the ripples
of the resulting 2-D filter), is obtained combining together
inequalities (29)—(32):

617 S(Spl + 6172 + (l det(A)l - 1)ma“x{6317682}
5¢ <| det(A)| max {5, 5, }.

(60)
(61)

We can obtain a simple worst-case relationship between 6,0,

and N, (for fixed area A) if &,, = 8,, = 8,, = 6o, = 6. In

such a case, we have that

6p6s < | det(A)|(] det(A)] + 1)8%. (62)

As a matter of fact, the derived upper bound is quite pes-
simistic, and experimental tests show that one can actually
reach much smaller values for ¢,6,. On the other side, the
lack of a theoretical expression for the lower bound for 6,6,
in the 2-D case (see Section II-B), makes it difficult to predict
the actual characteristics of the resulting filter.

As an operative rule of thumb, we can accept the fol-
lowing simple approximation in the case of GF filters: term
6p0s decreases as the product A - N, increases. Due to the
unpredictable effects of the contributions of the frequency
response oscillations of the two 1-D filters, our statement may
not hold true in some instances. A general theory capable
of predicting such behaviors is beyond the scope of the
present work. Nonetheless, experimental tests show that these
situations are not frequent in practice. Clearly, our simple rule
is more likely to hold true for small values of |det(A)|. The
higher the number of overlapping spectral repetitions, the more
unpredictable the behavior of the frequency response. This is
one of the reasons why, in the GF filter design algorithm, one
seeks for decimation matrices A with the smallest value of
| det(A)| (another reason being that—as already noted—large
values of | det(A )| typically induce the passband and transition
band of filters g¢;(n) to be narrow, with consequent increase
of the design burden).

The just described relations among filter parameters have
been used as a guideline criterion for the design of 2-D IFIR
structures proposed in [6].
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B. Symmetries

The impulse responses of M-D filters defined on lattices
often enjoy symmetries, which may be exploited in order
to reduce the computational weight (in terms of number of
multiplications per input sample) if the generalized factorable
implementation is not adopted. The type of symmetry we
consider here is the one deriving from a spatially complete
congruent mapping (i.e., A — A bijective) [19]. In other
words, given filter h(Cn), we are looking for an integral
unimodular matrix Q such that

h(Cn) = h(CQn) ,n € Z2. (63)

It is useful, for the arguments of this section, to define the
following integral unimodular matrices:

Q=1=(5 {)@=(] o)

Qu(b) = (é f’l), Qo) = (i _01)

where b and ¢ are integer. The matrices of (64) characterize
the set Q of 2 x 2 integral matrices that coincide with their
own inverse:

Q= {£Q1,+Qs, £Qs(b),£Q4(c), integer b,c}.

If the 1-D filters g1(n) and g2(n) of Section III-A are
zero—phase (as we have assumed so far), then filter A(n)
as in (41) satisfies property

h(n) = H(Qn), Q € {£Q;,+Q3(0)}.

Its sampled version h(An) (see (43)) satisfies property (from
(66))

(64)

(65)

(66)

h(An) = h(QAn), Q € {£Q1,+Q3(0)}

QAn € LAT(A).  (67)

In order for the mapping specified by Q to be complete, the
last condition of (67) should hold true for each n € Z2. This
is equivalent to (remember that Q is unimodular)

LAT(QA) = LAT(A) (68)

ie., to

At QA is integral. (69)

This condition is trivially satisfied if A is unimodular. Assume
now |det(A)| > 1. Note that, since det AT1QA = =1,
condition (69) is equivalent to

(A7'QA) ' = A'Q7'A = A7TQA is integral  (70)

and, therefore, A"'QA = Q; for some Q; € Q. We can
rewrite this last identity as

QA =AQ;, Qe

Assume A is in upper Hermite normal form (see Remark 2 of
Section 3.1). We should now determine when (71) is satisfied
for Q € {£Q1,£Q3(0)}. Cases Q = +Q; are trivial. In
particular, —Q; A = —AQ,, i.e., employing zero-phase 1-D

(71)
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Fig. 4. Passband support (solid line) and stopband support (dashed line) of
a GF filter within a unit cell of Z2.

filters, the resulting 2-D filter is zero-phase. This property was
already derived in [3].

It remains to check case Q = +Q3(0), which can be
verified by direct inspection. Condition (71) is never satisfied
for Q = £Q3(0),Q; = Q2. Case Q; = Q3(0) = Qu4(0)
satisfies (69) only if A is diagonal, but, according to Remark
5 of Section III-A, this implies A = I, and we are back to the
case of unimodular A. The only other case for which condition
(69) is satisfied when Q = £Q3(0), is for Q; = £Q3(1) if
Ay = 241,

Let us summarize the results of this section. Assume the
1-D filters g1(n) and go(n) are zero-phase. Then h(Cn) =
h(—Cn). Moreover, if the decimation matrix A is unimodular,
then

h(Cn) = h(£CQ3(0)n). (72)

Such a relation can be regarded to as a quadrantal-like symme-
try. The number of multiplications per input sample in this case
is one half that of the case of simple zero-phase symmetry.

If A is not unimodular, let A* be the upper Hermite
normal form matrix right-equivalent to A. Then relation (72)
is verified if (and only if) A} ; = 24Y,.

As an example, consider the case of a GF filter (defined on
Z?%), whose passband support is represented by a solid line in

Fig. 4. A basis of the decimated lattice is A = *g i ,

which is right-equivalent to the upper Hermite normal form

3 i) Since Af | # 247 ,, the quadrantal-
like symmetry is not verified (in spite of the inherent symmetry
of the passband support).

One may also look for a weaker symmetry condition, i.e.
when relation (72) holds for points belonging to a sublattice
LAT(CH) of LAT(C). In such a case, the number of
multiplications per input sample required in the realization
can be reduced by a factor | det(H)|/(| det(H)| — 0.5) with
respect to the case of simple zero—phase symmetry.

matrix A% =
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1 0
0 2
per Hermite normal form matrix right-equivalent to AH
is (AH)* = é g), and therefore, the quadrantal-like
symmetry holds on sublattice LAT(CH). The number of
multiplications per input sample can be reduced by a factor
4/3 exploiting such a symmetry.

In our former example, if H = , then the up-

C. 2-D Step Response

An important characteristic of filters to be implemented in
video applications, is the behavior in case of sharp brightness
transitions. The ‘“ringing” corresponding to the oscillatory
response of the filter in such situations is visually quite
noticeable [20].

In the case of 1-D filters, the response to a unitary step
characterizes the filter behavior in such critical cases. For 2-D
filters, the response to 2-D unitary steps along two or more
directions, as well as to other “transition” functions, is usually
considered. For example, in [21] a technique to put linear
constraints in the filter design algorithm, in order to minimize
the maximum amount of ripples in the vertical, horizontal and
diagonal step response, as well as in the “quadrantal step”
response, is described.

GF filters are completely characterized by the two 1-D filters
q1(n) and ga2(n) of (40), together with the sampling matrix
A. Hence, it seems of interest to examine the relationships
between the step response characteristics of ¢;(n) and g2(n)
and that of the resulting 2-D filter.

We show in the following that for two suitable 2-D steps,
the output of filter h(a) is characterized by the step responses
of the decimated versions of ¢;(n) and g2(n). To this purpose,
let C = (cq]ca) be a basis of the filter definition lattice, and
consider function

ch (k) = Z f: h(’ﬂ101 + TLQCQ)

N =—00 Ng=—0co

(73)

where S¢, (k) represents the response of the filter to a 2-D
step oriented along co, “read” along c;. This is a good
characterization of the step response, because S, (k) actually
“spans” all the values of the output of the filter relative to
the 2-D step. In particular, we are interested in the position
of the ripples, and in the amount of the difference between
each overshoot and the next undershoot. Such parameters,
determined by Se,(k), are expected to represent a good
measure of the “annoyance” of the ringing. We will show
in the following how to choose orientations for the 2-D step
so that S¢, (k) can be related to the step responses of two
decimated versions of the two 1-D filters.

We can get some insight into Se, (k) by considering together
(41), (43) and (73):

k 00
S (k) =ldet(A)] S S Amiar +noas)
k o0

=|det(A)] Z Z q(nidig +n2de)
n|=—00 Ny=—00

— np==—
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“qa(n1daq +n2Az ) (74)

where (a;]az) = A. Now, suppose that C has been chosen
so that A is in lower Hermite normal form (see Remark 2 in
Section III-A); then A; 2 = 0 and

Sea (k)
k o)
= |det(A) Z (Ch(nlAl,l) Z QQ(N1A2,1+TL2A2,2)>

ny=—00 Ny=—00

(75)

Consider an Aj o—polyphase decomposition of ga(n) (with
“lz]” we denote the largest integer less than z):

0(n) = 65 (In/Az2))

where s(n) = n mod Ay 2 and ¢5(n) = g2(Az2n + s). Then,
calling

(76)

Q5= qg5(n) (77)
and
r(n) = (nds,1) mod A, 2 (78)
we can rewrite (75) as
k
Se, (k) = [det(A)] S aalnAr Q™. (79)

Equation (79) shows that the output of filter A(a) to a 2-D
step oriented along cg, “read” along points kci, coincides
with the step response of the 1-D filter with impulse response
ql(nAl_rl)Qg(m. If function ()% is constant with respect to
r, we have the important result that the 2-D step response
is the step response of a decimated version of g1(n), times
a multiplicative constant depending on ¢a(n). The following

]{Ir )
*lQ,Z

[(Az,2~1)/2] k
A22Q5 = Q2(0) + 2 Z Qo <A——) cos <27r

E—1 2,2
Q2(05>7 cven A2’2
+ { 0, odd Ays 80)

where (2(f) is the Fourier transform of ¢»(n). Hence, a
sufficient condition to have constant Q5 is

Qg(k/AQ’Z) =0fork > 0. (81)

If such a case is verified, the behavior of the considered 2-D
step response is determined only by ¢;(n). Note that as long
as the stopband frequency of Q1(f) is smaller than 0.5/A4; 1,
it is reasonable to assume that the peaks of the step response
of filter g1 (n) do not differ “too much” from the peaks of the
step response of its decimated version A; 1¢1(A;,1n) [6].

Completely similar considerations hold for the filter re-
sponse to a 2-D step oriented along ¢, where (&1[¢z) e
and C = CU is a basis of A such that the corresponding
subsampling matrix A = AU is in upper Hermite normal
form.
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Finally, let us recall that, for an ideal 1-D FIR filter, the
risetime is inversely proportional to its passband frequency
fp» while the overshoot goes from 6.8% to 9% as f, goes
from 0.25 to 0.

D. Frequency Response Constraints

If the filter to be designed is part of a sampling structure
converter, it iS important to impose some constraints on its
frequency response. For example, if the filter H(f) is expected
to cancel the undesired spectral repetitions occurring when up-
sampling from lattice I' = LAT(CH) to lattice A = LAT(C)
(I' C A, integral H), H(f) should be vanishing for f € I'*\ A*
[11], [12], so that the aliasing due to flat brightness areas is
removed. It is shown in the following how such a constraint on
the 2-D frequency response can be converted into constraints
on the two 1-D filters ¢;(n) and ¢go(n) used in the design of
the GF filter, as described in Section III-A.

Using the notation of Section III-A, from (45) a sufficient
condition for H(f) to be null for some f = f is

H(ATT(C"f+1)) =0, 1€ 2 (82)
In our case of interest, H(f) should vanish for
fel™\A* (83)
ie., for
fe {(CH)"n, ne 2%\ LAT(H")} (84)

Substituting (84) for f in (82), one gets the corresponding
constraint on H (f):

HA TH Tn+r)=0,ne 2>\ LATHT), r c 2*

(85)
Hence, H(f) should vanish for f belonging to the set
(LAT((AH™T)) + LAT(A™T))\
(LAT(A™") + LAT(A™T)) (86)

= LAT((AH)™T)\ LAT(A"T),
Since H(f) is periodic on Z2, condition (85) is equivalent to
Hf) =0, fec 2 P\ rAaT(A™T)

where P is a Z?-period of LAT(AH)~T. To have H(f)
vanishing in the | det(A)|(|det(H)| — 1) points of Z, one
should set Q1(f1) = 0 and/or Q2(f2) = 0 for (f1, f)¥ € Z.
We will call such points the nulling frequencies for the 1-D
filters. It is easily seen that, given set Z, there exist several
combinations of nulling frequencies for Q1(f) and Q2(f),
such that (87) is satisfied. For example, for each f' =
(fi, fH)T € Z, one could set

Qi) =0 if fi>f, j=12

Note that we do not want to set to zero H(f) in “useful”
frequencies; such an occurrence is avoided by the condition
in (88). Nevertheless, following the simple criterion expressed
by (88), H(f) may be forced to zero also for some frequencies
in LAT(A~T), which is not required by (87). As a matter of
fact, Z; and Z, (the sets of nulling frequencies for Q1 (f) and

87)

(88)
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Q2(f)) obtained from (88), are not the ones with minimum
cardinality, among those satistying the nulling constraint (87)
(ie., such that Z C 2Z; x Z5). Such a characteristic is
important, because, as is well known, adding constraints to
the frequency response of 1-D filters typically increases the
minimum filter length required to achieve desired specifics.
Thus we are led to seek for sets Z; and Z, with smaller
cardinality. To this purpose, we can exploit the following
observation. If Z contains two or more points {fl,f2, -}
with the same component fj1 = f]2 = f;. then the
nulling condition is satisfied for all of them simply by setting
Q;(f;) = 0.

The previous argument suggests the following procedure to
find “good” sets Z; and Z, for a given set Z.

1) For each point (fi, fi)T of Z such that f{ < f,, or
I3 < fpas set Qa(f3) = 0 or Q1(f}) = 0 respectively.
Take these points out of Z, and call Z the set of the
remaining points.

2) Determine all the clusters {C4} and {C%} of points of
Z having common component f3 or fL, respectively. In
order to find such clusters, one can start from the LDFL
containing LAT((AH)~7), determine (trivially) the
points of it within a rectangular unit cell of LAT(A~T),
and for each row (or each column) of the resulting set
determine which points belong to LAT((AH)™T).

3) Find a “minimum cost covering” of Zz by elements of
{C}} and {CL}, ie., a couple of sets Z = o uciEy
. UCH and 2, = CruCk U UCLE with minimum
cardinality, such that Z C 21 X Z5. i

4) Set Q1(f) =0for f € Z; and Q2(f) =0 for f € Zo.

Note, that in general, there exist more than one minimum cost
covering of Z by clusters of {C{} and {CL}. In order to
design 1-D filters with frequency response constrained to zero
in the chosen frequencies, one may use linear programming
[22] or the Parks—-McClellan algorithm [18] for minimax
filters.

As an example, consider the following case: A~T = 1,

(AH)"" = (%4 11/ /162 s for = 1/24, f,, = 1/8. Fig. 5

represents lattice LAT((AH)~T), together with the unit cell
R(1/2,1/2) of LAT(A~T) (continuous line) and the pass-
band region of H(f) (dashed line). The set Z corresponds
to the set of points of LAT((AH)~T) within R(1/2,1/2),
excluding the origin. A minimum cost covering of Z is repre-
sented by the clusters of points within the regions contoured
by dotted lines. Filter Q1 (f) (corresponding to the horizontal
axis) is forced to zero for f € {1/4,1/2}, while filter Q»(f)

is forced to zero for f € {1/6,1/3,1/2}.

V. CONCLUSIONS

In this paper, we bhave presented an analysis of GF filters,
which pushes forward the work of Chen and Vaidyanathan
[1]-{3]. GF filters are appealing because they can be imple-
mented efficiently, and because they are easy to design and
to analyze, as they are built starting from 1-D prototypes.
We have described here the relations among minimax filter
parameters, the symmetries in the impulse response which
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Fig. 5. Example of nulling constraints, relative to the up-sampling from
lattice LAT(AH) to lattice L.4T§A) = Z? (see text). The dots denote
the points of lattice LAT((AH)™* ), the region contoured by solid line is
the unit cell R(0.5,0.3) of Z2, the region contoured by dashed line is the
passband region of H(f), and the regions contoured by dotted lines denote
the clusters of points corresponding to the nulling frequencies of the two 1-D
filters.

derive from zero-phase symmetry in the 1-D prototypes, the
characteristics of the 2-D step response, and how to translate
constraints on the 2-D frequency response into constraints on
the 1-D prototypes.
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